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Application of phase retrieval algorithm in reflective

tomography laser radar imaging
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We apply phase retrieval method to align projection data for tomographic reconstruction in reflective
tomography laser radar imaging. In our experiment, the target is placed on a spin table with an unknown,
but fixed, axis. The oscillatory motion of the target in the incident direction of the laser pulse is added at
each view to simulate the real satellites random motion. The experimental simulation results demonstrate
the effectiveness of this method to improve image reconstruction quality. Future research also includes
the development of projection registration based on phase retrieval for targets with more complicated
structure.
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Reflective tomography is one of the most effective high-
resolution imaging methods in laser radar imaging sys-
tems. The range-resolved laser reflective tomography
imaging laser radar was first introduced by Parker
et al.[1−4] Several years later, Matson et al. began ex-
ploring the technique of using the HI-CLASS coherent
laser radar system to obtain reflective images by carrying
out a heterodyne system analysis, deriving and validat-
ing imaging signal-to-noise ratio (SNR) expressions, and
so on[5−11].

The range to the target in incoherent direct detection of
range-resolved reflective tomography cannot be measured
with sufficient accuracy to align the intensity projections
to an appropriate center of rotation. This would bring
serious artifacts in the final images reconstructed. How-
ever, displacement of the individual projection in the in-
cident direction of laser pulse only produces linear phase
errors in their Fourier transforms. In theory, the Fourier
modulus of each projection is unaffected by the misalign-
ments in the incident direction. We can infer the Fourier
modulus of the target from the misaligned projections
by using the Fourier slice theorem for tomographic re-
construction. The phase retrieval algorithm developed
by Fienup[12,13] can be used for the object image recov-
ery. Ford et al. first introduced this iterative technique
to automatically align simulated projection data for re-
flective tomography[10]. However, in their presentation,
the projections were required to satisfy the assumptions
associated with transmission tomography by computer
simulation. In other words, they simulately absorbed,
rather than reflected, the signal. Afterwards, Matson
et al. mentioned the phase retrieval algorithm[11]; how-
ever, the imaging results of the phase retrieval algorithm
in reflective tomography has not been reported. In this
letter, we present the first image reconstruction results of
a target by using phase retrieval algorithm in the range-
resolved reflective tomography techniques.

A brief review of mathematical foundations, in-
cluding filtered back-projection and Radon-Fourier
transform[1−3], is first provided for reflective tomograpic

reconstruction. Let f(x, y) denote the image to be re-
constructed, and Lr,φ denote the solid line r = xcos φ +
ysinφ (Fig. 1(a))

p(r, φ) =

∫

Lr,φ

f(x, y)ds, (1)

where s represents the solid line along Lr,φ, p(r, φ) is the
projection of the target f(x, y) at angle φ, and the vari-
able r denotes the spatial variable along the integration
path in the φ direction.

Using back-projection, the reconstructed image g(x, y)
is given by

g(x, y) =

m∑

i=1

F−1
1

{
c̃F1[p(r, φ)]

}
∆φ, (2)

where φi is the angle of the ith projection, ∆φ is the sam-
pling angular separation, m is the total number of pro-
jections, F1 and F−1

1 denote the one-dimensional (1D)
Fourier transform and the inverse Fourier transform op-
erators; r represents space variable; c̃ is the filter func-
tion, which is the product of a window function and the
magnitude of the spatial frequency[1,2,5,6,16,17].

The Radon-Fourier transform method is based on
Fourier slice theorem, which states that the 1D Fourier
transform of a projection is a slice through the two-
dimensional (2D) Fourier transform of the target. In
mathematics, the Fourier slice theorem can be expressed
as

  

Fig. 1. Diagram of reflective tomography.
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G(u cosφ, v sin φ) = P (K, φ), (3)

where P (K, φ) = F1[p(r, φ)], G(u, v) = F2[g(x, y)], F2

denotes the 2D Fourier operator. By collecting projec-
tion data at a number of angles, recovering a complete
estimate of Fourier transform without directly measuring
all points in the target is possible. Then, the 2D image
recovery can be generated by using an inverse Fourier
transform. For conventional transmission tomography,
the integrated transmission in the direction φ is equiva-
lent to 180◦ + φ. However, for reflective tomography, the
projection p(r, φ) and p(r, 180◦ + φ) leads to a different
Fourier estimate along the same line φ+90◦ through the
origin. Figures 1(a) and (b) show the process above. In
this case, the average of the two estimates will be used[2].

Notably, for all angles, all the Fourier-transformed
slices intersect at zero spatial frequency and should be
approximately equal to one another at this point. The
reflectivity of the target is a function of the incident an-
gle and surface reflective characteristics; therefore, the
zero-spatial frequency value of each projection can be
quite different. Therefore, normalization coefficient αϕ

should be introduced to enforce that all projections have
the same values at zero spatial frequency[11]. The mod-
ified Fourier slice formula for reflective tomography can
be given by

αφ{F1[p(r, φ)]} + αφ+180◦{F1[p(r, φ + 180◦)]}

2
= G(−usinφ, vcos φ). (4)

Using the modified reflective tomography Fourier slice
theorem, the Fourier modulus estimates of the 2D image
to be reconstructed can be obtained. The next problem
is to find an object consistent with the measured Fourier
modulus. Phase retrieval is introduced below.

Phase retrieval algorithm was first introduced by Ger-
chberg et al.[18] to recover a 1D wave function from
Fourier data[19]. Subsequently, Fienup et al. modi-
fied the above algorithm to address the phase retrieval
problem for the reconstruction of stellar interferometry
data[12−15]. A general block diagram of these two itera-
tive algorithms is available in Fig. 2.

The mathematic formula of error reduction is given by

gk+1(x, y) =

{
g′k(x, y) (x, y) 6∈ γ
0 (x, y) ∈ γ

; (5)

the mathematic formula of hybrid input and output is
given by

Fig. 2. (a) Error reduction algorithm; (b) hybrid input and
output algorithm. FFT: fast Fourier transform; IFFT: inverse
FFT.

Fig. 3. Experimental setup used to measure range-resolved
reflective tomography.

gk+1(x, y) =

{
g′k(x, y) (x, y) 6∈ γ

gk(x, y) − βg′k(x, y) (x, y) ∈ γ
, (6)

where γ includes all points at which g′(x, y) violates the
object constraints; β is a constant, β = 0.7 in this letter;
and k is the iteration number.

The experimental setup used to measure range-resolved
data is shown in Fig. 3. A triangular prism was illumi-
nated by 8-ps, 1064-nm pulses with Gaussian profile from
a passive Q-switched pulsed laser. Monostatic waveform
was detected and recorded every 50 ps by a Tektronix
series TDS7000B communication signal analyzer for a
total time of 25 ns. The corresponding distance resolu-
tion of system was 7.5 mm because of the reflection off
of the target. The distance between the detector and the
target was set at 9.1 m because of the space constraint in
the laboratory scale. The target was a triangular prism
(30-cm axial height). The target was rotated around an
unknown and fixed axis perpendicular to the direction of
incident radiation. The projections were sampled at 1◦

steps from 0◦ to 360◦.
Figure 4 shows the collected projection data and the

corresponding views relative to the target. Then, the
standard tomographic method of filtered back-projection
was applied to the set of projections to produce a 2D
image. The image reconstructed has the dimensions of
range versus range, as if the target was being viewed
along the rotation axis, as illustrated in Fig. 5.

In actual Doppler-time-intensity (DTI) detection, the
relative motion of the target manifests itself as an oscil-
latory curve[21]. We suppose an approximate oscillatory
motion of the target in the incident direction of laser
pulse at range-resolved adjacent views[10]. First, a ran-
dom amount of translation was simulated for each aligned
projection. High-frequency components of the random
displacements were not appropriate for translations be-
cause of the continuity of target motion. A second order
inertial filter was assigned to adjust the random amounts
to accord with real satellite vibrations. The final simu-
lated displacements could be the combination of many
low frequencies. The standard projections were trans-
lated by moving each projection away from the center of
alignment by the filtered random amount (1–15 pixels),
as shown in Fig. 6. The degraded image reconstructed
by filtered back-projection with above misaligned pro-
jections is shown in Fig. 7.

The Fourier modulus estimates of the target can be
obtained from the misaligned projection data using the
Fourier slice theorem for reflective tomography. This
reconstructed Fourier spectrum is on a polar grid. Polar
to rectangular coordinate transformation is necessary for
Fourier transform. Details are discussed in Refs. [22,23].
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Fig. 4. Integrated diagram of projections viewed in 360◦ for reflective tomography. 1 bin=7.5 mm.

Fig. 5. Image reconstructed by filtered back-projection after
threshold processing.

Fig. 6. Projections with misalignments.

The rectangular grid Fourier spectrum is then filtered
with the |k| filter to boost the high spatial frequencies
and avoid artifacts. Figure 8(a) shows the Fourier mod-

ulus estimates |G̃(u, v)| from the misaligned projections.
Figure 8(b) shows Fourier modulus |G(u, v)| of the im-
age reconstructed with aligned projections (Fig. 5). The
mean square error (MSE) in the Fourier domain before
phase retrieval can be given by

EF =




∑

u,v

[|G̃(u, v)| − |G(u, v)|]2

∑

u,v

|G(u, v)|2




1/2

= 0.9924. (7)

The diameter of the target can be computed from the
Fourier modulus because it is half the diameter of the

Fig. 7. Image reconstructed by projections with misalign-
ments.

Fig. 8. (a) Fourier modulus | eG(u, v)| from the aligned pro-
jections using Fourier slice theory; (b) Fourier modulus
|G(u, v)|of Fig. 5.

autocorrelation,

g(x, y) ⋆ g(x, y) = F−1
2 {|G̃(u, v)|2}, (8)

where ⋆ denotes autocorrelation operation, and F−1
2 de-

notes 2D inverse Fourier operator. Another object do-
main constraint is the need for g(x, y) to be real and
non-negative. The phase retrieval algorithm was com-
bined with 20 iterations of error reduction method and
100 iterations of hybrid input-output method for faster
convergence[14]. Three rectangular support masks with
different initial guesses were used; the corresponding
imaging results are shown in Fig. 9.

When the degraded image (Fig. 7) or constant matrix
was used as the initial guess, we could obtain stable
image recovery results. In Fig. 9(a), the degraded image
is used and the MSE after phase retrieval is 0.4097; in
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Fig. 9. Phase retrieval results using different initial guesses.
(a) Degraded images as the initial guess, (b) constant matrix
as the initial guess, (c) and (d) random matrix as the initial
guess

Fig. 9(b), constant matrix is used and the MSE after
phase retrieval is 0.3773. When random matrix is used
as the initial guess, the MSE after phase retrieval is ap-
proximately 0.4506. The retrieval results are in an unsta-
ble state according to Figs. 9(c) and (d). The reduced-
area support constraint method can be used to overcome
these simultaneous twin images; details can be found in
Ref. [15]. Finding that the constant matrix has better
convergence than the others is easy when the value of
MSE is used. For better reconstruction of these three
initial guesses, the object support constraint should be
changed in the process of phase retrieval algorithm. The
first several iterations require to define a smaller sup-
port mask that tightly constrains the object; this helps
to force most energy of the image into a confined region
in less iteration. Afterwards, the support mask should
be enlarged to the correct support constraints for the
object. For the later iterations, a larger support con-
straint should be used to ensure that none of the target
part is truncated by the constraint[14]. Finally, all the
recovery images could be in stable state. Although there
were artifacts in the reconstructed images, the general
shape of the triangular prism was clearly recognized, and
the size of the image reconstruction results matched ap-
proximately with the real target. We also collected data
on another group of simulated misalignments for projec-
tions to validate the adaptability of this phase retrieval
method, and the final image reconstruction was consis-
tent with the former results.

In conclusion, we have demonstrated projection reg-
istration in range-resolved reflective tomography image
reconstruction using a phase retrieval method to solve
the issues of the unknown location of the axis of rota-
tion and random target translation in the incident direc-
tion of laser pulse. Results show that limited distance
of 9.1 m and range resolution of 7.5 mm in projections
work well on experimental simulated misaligned projec-
tion data to improve the quality of image reconstruction.
The combination of error reduction and hybrid input-
output iteration developed by Fienup is used to improve
algorithm convergence. Three support masks with dif-

ferent initial guesses are used. The general shape of the
target is clearly recognized in the recovered images, and
the size approximately matches that of the real target.

In the real world, the targets are always in complicated
motions, and the simple motion model in this letter is just
at the preliminary stage of research. In this experiment,
a simple diffuse target is used. However, the realistic sur-
face materials are the combination of diffuse and specular
reflective characteristics[1,24]. This discrepancy between
model and actual data may interfere with the conver-
gence of the phase retrieval algorithm[10]. Robustness of
this algorithm for different surfaces of the target will be
investigated in the next project.

This work was supported by the National Natural Sci-
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